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This paper presents a parallel multigrid method for computing inviscid and vis-
cous high speed steady-state reactive flows. The governing equations for reactive
flow are solved using an explicit multigrid algorithm while treating the chemical
source terms in a point implicit manner. The CUSP (Convective Upwind and Split
Pressure) scheme is used to provide necessary artificial dissipation without conta-
minating the solution. This explicit method yields excellent parallel speedups, thus
enabling the calculation of reactive flows with detailed chemical kinetics including
large numbers of species and reactions. Results indicate good multigrid speedups and
adequate resolution of the reaction zone in both inviscid axisymmetric and viscous
two-dimensional hydrogen/oxygen and hydrogen/air test cases.c© 1998 Academic Press

1. INTRODUCTION

The simulation of high speed chemically reacting flows is a very challenging area for
computational methods. The presence of shock waves necessitates good shock capturing
properties, while excessive numerical dissipation must be avoided in the treatment of chemi-
cal reactions so that the solution remains uncontaminated. Viscous effects, heat conduc-
tion, and species diffusion complicate reactive flow calculations, both from the increased
computational work required and because of possible interactions between the chemistry
and these effects. Diffusion of radical species in a boundary layer may significantly alter
the resulting flowfield. Exponential increases and decreases of radical species in small spa-
tial zones lead to large gradients that must simultaneously be captured without oscillation
and without unnecessary dissipation. In addition, there is usually a great disparity between
the characteristic time scales of the chemical source terms and the characteristic times of
the convective and diffusive portions of the governing equations. This “stiffness” makes the
integration of the governing equations very difficult and time consuming.

Stiffness may be viewed in terms of characteristic times. If two processes exist in the
same system, but the first has a very short characteristic time while the second has a much
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longer characteristic time, then it is clear that after a short period of time, the first process
will have been completed. Thus, further change in the solution is only determined by the
second process and it would only be necessary to use the second mode to further advance
the solution. Therefore, in terms of accuracy, only the second mode is important after
the first mode has reached an “equilibrium” state. However, for the numerical solution
of the system, the stability requirements of the scheme necessitate retaining both modes.
The time step limitation of the scheme is based on the fastest mode, which means that the
system is being simulated at an exceptionally slow rate. This conflict between acceptable
accuracy and necessary stability is the heart of stiff problems [12]. Stiffness is not only a
problem in chemically reacting flows; the large disparity of characteristic times in nearly
incompressible flows in one reason for the slow convergence rates and loss of accuracy
of hyperbolic solvers at low Mach numbers [1]. Artificial compressibility is a way of
removing the inherent stiffness of incompressible flows by preconditioning the equations
to attain higher convergence rates with a hyperbolic solver.

Because most of the detailed chemical mechanisms contain chemical reactions which
evolve over characteristic times much smaller than those of the convective flow field, many
explicit schemes are handicapped in computing such flows. In fact, while the thickness of
the reaction zone is controlled by the slowest reactions, stiffness may be present within the
mechanism as some modes may decay very rapidly while others have longer lifetimes. The
time step for an explicit scheme is proportional to the shortest characteristic time, so that
stability restrictions require very short time steps in reactive flow simulations. This short
time step leads to very long simulation times for steady state computations.

Several ways to overcome this limitation of explicit schemes for chemically react-
ing flows have been explored. Gear [12] recognized that treating a stiff system impli-
citly would remove time step limitations for stability purposes and allow the time step
to be chosen on the basis of accuracy requirements. Thus, one way to remove stabi-
lity limitations for the simulation of chemically reacting flow is to use a fully implicit
scheme. Wilson and MacCormack [38] used such a scheme with Gauss–Seidel line relaxa-
tion to compute steady hydrogen/air combustion over high speed blunt projectiles. Shuen
and Yoon [32] used a Lower-Upper Symmetric Successive Overrelaxation (LU-SSOR)
implicit factorization scheme to compute premixed and non-premixed chemically react-
ing flow including viscous effects. Yungster [43] used an LU-SSOR scheme to compute
shock-wave/boundary layer interactions in premixed combustible gas flows. Yungster and
Rabinowitz [46] used the same LU-SSOR scheme to simulate high speed methane/air com-
bustion over blunt bodies and ram accelerator configurations. Ju [18] implemented a Lower-
Upper Symmetric Gauss-Seidel (LU-SGS) scheme to calculate several reactive viscous
flows.

Due to the large allowable time step of an implicit scheme, all of these methods may
converge to a steady state solution in fewer time steps than an explicit method. However,
these implicit methods entail inverting large numbers of matrices. Most link the solution do-
main together in a way that may hamper efficient parallelization. For unsteady simulations,
the restriction on the time step for time accuracy may be the dominant factor, removing
the advantage gained by the unconditional stability of the implicit scheme. In addition,
during the initial stages of a steady state simulation, growing modes (such as production of
radicals) may require the time step to be set by accuracy requirements instead of stability
requirements which would again lower the advantage of having a large allowable time step
from stability considerations.
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Another way of reducing the effect of the chemical term stiffness is to treat the source
term in a point implicit manner. In this formulation, due to Bussing and Murman [2, 3],
the source term at the next time level is linearized about the current time level, leading
to a fully explicit equation at the cost of a matrix inversion. This action has the effect of
preconditioning the species continuity equations, rescaling the chemical characteristic time
so that it is of the same order as the convective characteristic time. Thus, the entire system
may be advanced using a time step based on the spectral radii of the convective and diffusive
portions of the governing equations. Palmer and Venkatapathy [28] performed a study of
high speed dissociating air using both the fully implicit and point implicit approach. They
found that, at higher Mach numbers, the fully implicit scheme would not converge unless
its time step was drastically reduced while the point implicit scheme was very robust and
converged at all Mach numbers at its time step limit.

Numerous investigators have used the point implicit approach for both steady state
[8, 44, 45] and unsteady simulations [26, 39]. Wilson and Sussman [39] combined the
point implicit treatment with a formulation of the species conservation equations in loga-
rithmic form. Thus, exponential increases and decreases of radical species in the induction
zone were captured quite well. However, the resulting numerical method is not fully con-
servative and necessitates the introduction of elemental conservation equations. Sussman
[33] modified the evaluation of the chemical source term so that the error of a finite dif-
ference scheme would be approximately cancelled, leading to higher accuracy and lower
grid requirements. This modification was combined with the point implicit treatment of the
source term to yield a very accurate scheme for the simulation of unsteady reactive blunt
body flows.

Bussing and Murman also approximated the source term Jacobian matrix by using only
its diagonal elements [3]. A considerable savings in computing time was achieved, but the
approximation introduces some inaccuracies in the time scaling of the species equations.
If these inaccuracies are severe enough, the scheme may become unstable. Eklundet al.
[7] investigated several variants of the point implicit procedure. Eberhardt and Imlay [6]
suggested scaling the linearized time step by a characteristic time for each species equation
and Ju [18] offered a means for approximating the characteristic time for each species.

Another option to ameliorate the effects of stiffness is to split the reactive portion and the
non-reactive portion of the governing equations and use different solvers on each portion
[27]. Thus, a stiff equation solver or asymptotic method could be used for the ordinary
differential equations that include the chemical source terms and a highly optimized flow
solver could be used for the convective and dissipative parts of the governing equation.
The flow field evolution takes place while the chemistry is frozen and then the chemistry is
advanced while the flow field is held constant.

The inherent inaccuracy of chemical rate data presents another challenge to modeling
reactive flows. The turn around time of reactive flow simulations must be made short enough
so that varying rate coefficients may be examined in order to determine which set is the
most appropriate for modeling a particular phenomena.

The use of multigrid acceleration for reactive flow calculations has not been adequately
examined. Bussing and Murman [3] explored the use of multigrid, but only for their one-
dimensional calculations. Multigrid techniques may have been thought to be too dissipative
and cause radical species to be moved to physically incorrect regions. However, proper
multigrid techniques [29, 30], in which the coarse grids are forced by the fine grid solution,
can in fact be used to compute chemically reacting flows. With the addition of viscous
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effects and species diffusion to reactive flows and the use of detailed chemical models,
a way to accelerate convergence is sorely needed. While parallelization will decrease the
computational time associated with a numerical simulation, multigrid techniques represent
an untapped potential for convergence acceleration of reactive flow calculations.

The accurate capture of shock waves and large gradients in species concentrations nece-
ssitates non-oscillatory numerical dissipation schemes that do not overly dissipate the so-
lution. Unphysical diffusion of radical species can lead to gross errors in the prediction of
reaction zones and induction times. Oscillations in temperature and pressure may lead to
inaccurate production and destruction of radicals. The Total Variation Diminishing (TVD)
approach has been taken by several investigators [25, 26, 39, 43, 44, 45, 46] to try to ac-
curately capture shock waves and reaction fronts. Yee and Shinn [40] investigated several
aspects of semi-implicit and fully implicit shock-capturing methods for reacting flow. Ju
[18] used a fourth order MUSCL (Monotone Upwind Scheme for Conservation Laws)
scheme with Steger–Warming flux vector splitting to calculate reactive flows. Jameson
[16, 17] has presented a framework for Local Extremum Diminishing (LED) and Essen-
tially Local Extremum Diminishing (ELED) schemes which have been shown to have
excellent shock capturing qualities for non-reactive perfect gas flows. The LED/ELED
framework includes the TVD concept but has the advantage of being equally generalizable
to structured and unstructured grids, unlike TVD. One scheme, the Convective Upwind and
Split Pressure (CUSP) scheme, has good shock capturing properties and has been shown to
give accurate viscous solutions without spurious numerical dissipation [34, 35]. Because of
its high accuracy in viscous dominated regions, it would be expected to provide the same
accuracy in regions where species diffusion effects are present. Thus, the CUSP splitting
combined with a flux limiter may be able to provide good resolution of inviscid and viscous
reactive flow phenomena.

In this work, the point-implicit formulation of Bussing and Murman is combined with an
explicit time-stepping multigrid solver [23] using CUSP dissipation to compute high speed
reactive flows. The algorithm is implemented using the MPI standard on an IBM SP. The
fully explicit nature of the point implicit scheme allows the algorithm to be implemented in
a fairly straightforward manner on a parallel computing platform. Because of the compact
stencil used in the underlying explicit numerical discretization, the cost of parallel com-
munication is quite low. This attribute, combined with the large amount of computational
work involved for each cell in a reactive flow simulation, leads to a highly parallel efficient
algorithm [29].

2. GOVERNING EQUATIONS

The two-dimensional equations for chemically reacting flow can be written in a Cartesian
coordinate system (x, y) as

∂w
∂t
+ ∂(f − fv)

∂x
+ ∂(g− gv)

∂y
= ω̇, (1)

wherew is the vector of flow variables,f andg are the convective flux vectors,fv andgv are
the diffusive flux vectors, anḋω is the vector of source terms. Consider a control volume
Ä with boundary∂Ä. The equations of motion of the fluid can then be written in integral
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form as

d

dt

∫∫
Ä

w dx dy+
∮
∂Ä

(f dy− gdx)

=
∮
∂Ä

(fv dy− gv dx)+
∫∫

Ä

ω̇ dx dy, (2)

wherew is the vector of flow variables

w =


ρi

ρu
ρv

ρE

 ,
f, g are the convective flux vectors

f =


ρi u

ρu2+ p
ρuv

ρEu+ pu

 , g=


ρi v

ρuv
ρv2+ p
ρEv + pv

 ,
fv, gv are the diffusive flux vectors including species diffusion effects

fv =


−ρi udi

τxx

τxy

−qx −
∑N

i=1ρi udi hi + τxxu+ τxyv

 ,

gv =


−ρi vdi

τyx

τyy

−qy −
∑N

i=1ρi vdi hi + τyxu+ τyyv

 ,
andω̇ is the chemical source vector

ω̇ =


ω̇i

0
0
0

 .
In these equations,i = 1, . . . , N and N is the number of species. For a thermally perfect
gas, pressure may be determined from

p = ρRT, (3)

whereR is the mixture gas constant. The density is found from

ρ =
N∑

i=1

ρi . (4)
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Temperature may be determined from the relation

E = e+ 1

2
(u2+ v2) =

N∑
i=1

ρi

ρ
hi − p

ρ
+ 1

2
(u2+ v2), (5)

wherehi are the individual species enthalpies which depend solely on temperature for a
thermally perfect gas. Combining the NASA polynomial representation of species enthalpies
[11] with the previous equation for energy yields an implicit equation for temperature which
is solved by Newton iteration.

As a first approximation, Fick’s Law is used to determine the individual species diffusion
velocities:

ρi udi = −ρDi∇
(
ρi

ρ

)
. (6)

The diffusion coefficientDi is determined from the formulation following Williams [37]
such that

Di = 1− Xi∑
j 6=i (X j /Di j )

, (7)

whereXi is the mole fraction of speciesi andDi j is the binary diffusion coefficient between
speciesi and j . The mixture viscosity and thermal conductivity are obtained in a mixture-
averaged manner [19].

3. CHEMICAL MODEL

One strength of the current work is that the resulting code can use an arbitrary chemical
model, thus allowing for quick comparison of reaction sets. Therefore, several different
chemistry models for hydrogen/air combustion are used in this work. The first is a reduced
equation model for hydrogen/air combustion due to Evans and Schexnayder [9] involving
seven species and eight reactions. Nitrogen in this set is treated as an inert diluent. The
second group of rate equations is the nine species, nineteen reaction modified model of
Jachimowski [13] and Wilson and MacCormack [38]. Again, nitrogen is treated as an inert
diluent because reactions involving nitrogen have been determined to be negligible below
Mach 5 [26]. Another chemistry model is that of Yetteret al.[20, 41, 42]. This mechanism,
which is part of a broader mechanism for the CO/H2O/O2 system, contains eight reacting
species and 21 reactions. The last model was one proposed by Westbrook [36] which
includes eight reacting species and seventeen reactions for hydrogen/oxygen combustion.

The chemical source terms are computed in the Arrhenius form, with the forward rate
coefficients,k f j , given by

k f j = Aj T
nj exp

(−EAj

RT

)
, (8)

whereEAj is the activation energy of thej th forward reaction. The reverse rate coefficients
are evaluated using the equilibrium constant for concentration

Kcj =
k f j

kbj

. (9)

This concentration equilibrium constant is obtained from the equilibrium constant in terms



                  

490 SHEFFER, MARTINELLI, AND JAMESON

of partial pressures,

Kcj = K pj

(
Patm

RT

)∑N

i=1
νi j

, (10)

whereN is the number of species andνi j is the change in the number of moles of species
i in reaction j . The equilibrium constantK pj is calculated from the standard Gibbs free
energy change for each reaction. Standard state free energies are obtained from the NASA
polynomial set [11].

4. NUMERICAL MODEL

4.1. Flow Equations

The governing equations are solved using a conservative second-order accurate finite
volume formulation in which the chemical source terms are treated point implicitly.

When the integral governing equations (2) are independently applied to each celli, j in
the domain, we obtain a set of coupled ordinary differential equations of the form

d

dt
(wi j )Vi j + C(wi j )− NS(wi j )− D(wi j ) = ω̇Vi j , (11)

whereC(wi j ) are the convective Euler fluxes,NS(wi j ) are the diffusive fluxes,D(wi j ) are
the numerical dissipation fluxes added for numerical stability reasons, andω̇Vi j are the
chemical source terms. This Eq. (11) can be rewritten as (drop thei, j subscripts for clarity)

d

dt
[w]V + R(w) = ω̇V, (12)

whereR is the sum of the three flux contributions. We may further simplify this expression
by defining a modified residualR′(w)=R(w)− ω̇V so that our set of coupled ordinary
differential equations becomes

d

dt
[w]V = −R′(w). (13)

The governing ordinary differential equations are solved using a standard five-stage time
stepping scheme [24].

4.2. Chemical Source Terms

The chemical source vectorω̇was treated in a point implicit manner [3]. The point implicit
treatment reduces the stiffness of the problem by effectively rescaling the characteristic time
of the reactions so that their magnitudes are commensurate with the convective characteristic
time. We begin by writing the governing ordinary differential equation for celli, j but instead
evaluate the chemical source vector at the next time level:

d

dt
[w]V + R(wn) = ω̇n+1V. (14)

We then linearize the chemical source vector about the present time level so that

ω̇n+1 ≈ ω̇n + ∂ω̇
∂w

n d

dt
[w]1t. (15)
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Substituting this into the governing equation and rearranging yields

d

dt
[w]V =

[
I −1t

∂ω̇

∂w

n]−1

[ω̇nV − R(wn)], (16)

which is evaluated entirely at the current time level and is thus fully explicit.
This treatment necessitates the inversion of the source term Jacobian matrix with dimen-

sion N× N whereN is the number of species present in the flow. An inversion for the
momentum and energy equations is not necessary due to the absence of chemical source
terms in those equations. ThisN× N inversion is done only during the first stage of each
time step of the solver and is retained and used for the succeeding four stages. This time-
saving step has no effect on the results of the computation.

Because the chemical source terms have been treated implicitly, the time step limitation
of the explicit time integration scheme depends solely on the spectral radius of the flux
Jacobian.

4.3. Numerical Dissipation

The Convective Upwind and Split Pressure (CUSP) scheme provides excellent resolution
of shocks at high Mach numbers at a reasonable computational cost [16, 17]. CUSP has
been shown to be an accurate and effective dissipation scheme for viscous flows [34] and
high speed reactive flows [29, 30, 31].

For simplicity, let us work in one dimension; extension to higher dimensions is straight-
forward. If the flow is locally supersonic, simple upwinding is a natural choice. We consider
the convective flux and pressure

fc = u


ρi

ρu
ρH

 = uwc, f p =


0
p

0

 (17)

separately. Upwinding of the convective flux is achieved by

dc
j+ 1

2

= ∣∣u j+ 1
2

∣∣1wc
j+ 1

2

= |M |cj+ 1
2
1wc

j+ 1
2

, (18)

whereM is the local Mach number attributed to the interval. Upwinding of the pressure is
achieved by

dp
j+ 1

2

= sign(M)


0

1pj+ 1
2

0

 . (19)

Full upwinding of both fc and f p is incompatible with stability in subsonic flow,
since pressure waves with the speedu− c would be traveling backwards, and the discrete
scheme would not have a proper zone of dependence. Since the eigenvalues of∂fc

∂w are non-

negative, while those of
∂f p

∂w are non-positive, a split with

f+ = fc, f− = f p (20)

leads to a stable scheme, similar to that used by Denton [5], in which downwind differencing
is used for the pressure.
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This scheme does not reflect the true zone of dependence in supersonic flow. Thus one
may seek a scheme with

dc
j+ 1

2

= f1(M)cj+ 1
2
1wc

j+ 1
2

(21)

dp
j+ 1

2

= f2(M)


0

1pj+ 1
2

0

 , (22)

wheref1(M)and f2(M)are blending functions with the asymptotic behaviorf1(M)→ |M |
and f2(M)→ sign(M) for |M |> 1. Also the convective diffusion should remain positive
when M = 0, while the pressure diffusion must be antisymmetric with respect toM . A
simple choice is to takef1(M)= |M | and f2(M)= sign(M) for |M | > 1, and to introduce
blending polynomials inM for |M |< 1 which merge smoothly into the supersonic segments.
A quartic formula

f1(M) = ao + a2M2+ a4M4, |M | < 1 (23)

preserves continuity off1 and d f1
d M at |M | =1 if

a2 = 3

2
− 2ao, a4 = ao − 1

2
. (24)

Then ao controls the diffusion atM = 0. For transonic flow calculations a good choice
is ao= 1

4, while for very high speed flows it may be increased to1
2. A suitable blending

formula for the pressure diffusion is

f2(M) = 1

2
M(3− M2), |M | < 1. (25)

This splitting can be shown to be approximately equivalent [16] to the Liou–Steffen splitting
[22]. The final form of the diffusive flux for cell interfacej + 1

2 is

d j+ 1
2
= dc

j+ 1
2

+ dp
j+ 1

2

. (26)

In the case of viscous flows, the spectral radius used for the dissipation is reduced by the
spectral radius of the diffusive fluxes so that artificial diffusion does not swamp the physical
diffusion present in the flow.

4.4. Flux Limiting

The CUSP splitting by itself will achieve a first order diffusive flux and thus will cause
the numerical solution to remain monotone in regions of high gradients. To recover the
second order accuracy of the finite volume scheme in smooth regions, we use a flux limiter.

The limiter is used in the following way. Define the modified diffusive flux,d′i+1/2 for
the j th equation as

d′i+ 1
2
= di+ 1

2
− L

(
di+ 3

2
, di− 1

2

)
, (27)

whereL is a limiter that has the properties of an average, except thatL(u, v)= 0 if u andv
have opposite signs. We can see that if an extremum exists in either celli or cell i + 1, then
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the limiter will have a value of zero, thus enforcing a first order diffusive flux and forcing
the solution toward monotonicity. If an odd-even mode develops, then the limiter will be
non-zero, effectively adding third order dissipation to damp the odd-even mode. Otherwise,
the limiter will effectively add anti-diffusion to the first order diffusive flux, allowing the
scheme to retain its second order accuracy.

A symmetric positive limiter that was applied in this work was theα-mean limiter,

L
(
di+ 3

2
, di− 1

2

) = αS
(
di+ 3

2
, di− 1

2

)
min(A, B,C), (28)

where

S(u, v) = 1

2
{sign(u)+ sign(v)} (29)

A = ∣∣di+ 3
2

∣∣ (30)

B = ∣∣di− 1
2

∣∣ (31)

C = 1

2

∣∣di+ 3
2
+ di− 1

2

∣∣. (32)

This limiter has the disadvantage of being active near smooth extrema and will force the
scheme to be first order accurate in that neighborhood.

A way to overcome this limitation is to construct a limiter which becomes local extremum
diminishing for the scalar case as the mesh spacing approaches zero (Essentially Local
Extremum Diminishing). This limiter can be constructed by setting

L(u, v) = 1

2
D(u, v)(u+ v), (33)

where

D(u, v) = 1−
∣∣∣∣ u− v
max(|u| + |v|, ε1xr )

∣∣∣∣q, (34)

wherer = 3
2,q≥ 2, andε >0 is a small number. Then, ifD(u, v) is applied in the neigh-

borhood of a smooth extremum, the dissipative flux will be of order1x2 [16]. In this work,
both the LED and ELED limiters described above were implemented and tested for both
inviscid and viscous reactive flows. The differences between the results using each limiter
were minimal and thus the LED and ELED limiters were used interchangeably.

The final form of the artificial diffusive flux is then

D(wi j ) = d′i+ 1
2 , j
− d′i− 1

2 , j
+ d′i, j+ 1

2
− d′i, j− 1

2
. (35)

4.5. Boundary Conditions

The surface boundary is modeled as an adiabatic, non-catalytic inert surface. For Euler
calculations, flow tangency is enforced at the surface while a no-slip boundary condition is
used for viscous flows. Due to the supersonic nature of the flow, outflow boundary quantities
are extrapolated from the interior and inflow quantities are taken to be free stream values.

Free stream values of radical species are set to a mass fraction of 1× 10−11. Varying this
value did not affect the results.
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5. MULTIGRID CONVERGENCE ACCELERATION

Multigrid acceleration has been applied quite successfully to the solution of both the
non-reactive Euler and Navier–Stokes equations [23, 24, 34]. However, the application of
multigrid methods to reactive flow calculations has been limited. Bussing and Murman
[3] reported success in using Ni’s multigrid method for one-dimensional reactive flow
calculations. Additional examples of multigrid acceleration for reactive flows are lacking.

The approach taken in this paper is to use a previously validated multigrid solver [23, 24,
34] and include chemical source terms on all levels [29, 30]. The coarse grid corrections to
the species densities are limited to ensure that no mass fraction becomes negative. Varying
degrees of underrelaxation can be used to enhance the convergence rate while capturing the
sharp gradients and large radical growth regions that characterize reactive flow problems.

The multigrid scheme is a full approximation scheme defined as follows [14, 15]. Denote
the grids by a subscriptk. Start with a time step on the finest gridk= 1. Transfer the solution
from a given grid to a coarser grid by a transfer operatorPk,k−1, so that the initial state on
grid k is

w(0)
k = Pk,k−1wk−1. (36)

This transfer operation is done in a manner to be fully conservative

w(0)
k =

∑
i j wk−1Vi j∑

i j Vi j
. (37)

Then on gridk the multistage time stepping scheme is reformulated as

w(q+1)
k = w(0)

k − αq+11t
(
R′ (q)k +Gk

)
, (38)

where the residualR′ (q)k is evaluated from current and previous values, and the forcing
functionGk is defined as the difference between the aggregated residuals transferred from
grid k− 1 and the initial residual calculated on gridk. Thus

Gk = θu Qk,k−1R′(wk−1)− R′
(
w(0)

k

)
, (39)

where Qk,k−1 is another transfer operator which collects the residuals in a conservative
manner. The constantθu is an underrelaxation factor, intended to be used to avoid instabilities
caused by collected chemical source terms on the fine grid forcing the coarse grid solution
in a spurious manner. Because only the fine grid may have sufficient resolution to capture
induction and reaction zones, forcing by the full collected residual may cause an unphysical
broadening of heat release regions, leading to instabilities on the coarse grid. This effect may
also limit the number of multigrid levels which can be used for a given fine grid resolution.
The distribution of mesh points in the grids used for our computations allowed the testing
of the scheme using only two levels of multigrid. Typical values for the scalarθu range from
0.75 to 1.00. During the first stage on the coarse grid, the forcing termGk simply replaces
the coarse grid residual by the aggregated fine grid residuals

w(1)
k = w(0)

k − α11t (θu Qk,k−1R′(wk−1)), (40)

so that the coarse grid is forced by some portion of the fine grid solution. The solution is
then advanced in the usual manner on the coarse grid. The accumulated correction on a
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coarser grid is transferred to the next higher grid by a limited interpolation operatorI ′k−1,k

so that the solution on gridk− 1 is updated by the formula

wnew
k−1 = wk−1+ I ′k−1,k

(
wk − w(0)

k

)
. (41)

The limited interpolation operator has the usual properties of a bilinear interpolant in addi-
tion to a filter which prevents individual species densities on the fine grid from being updated
to a negative density. This simple limiter consists of a logic check on the updated species
density; if the updated value will become negative, a smaller portion of the coarse grid
correction is added to the fine grid solution. The whole set of grids is traversed in aW-cycle
in which time steps are only performed when moving down the cycle. First order numerical
diffusion is always used on the coarse grids because only the interpolated corrections are
added to the fine grid variables. The use of a higher order scheme on the coarser levels has
been observed to lead to a loss of robustness. In addition, using first order dissipation saves
computational time and helps damp out error modes more quickly as well.

6. RESULTS AND DISCUSSION

The formulation described in this work was applied to non-reactive and reactive flows
in order to verify and validate the algorithm. Reference [29] presents several test cases
involving inviscid and diffusive non-reactive and reactive flows with analytic or asymp-
totic solutions. In this article, both inviscid axisymmetric flows over spherical blunt bodies
and two-dimensional viscous ramp flows using detailed chemical models for hydrogen
combustion are considered.

The MPI standard is used to parallelize the code on an IBM SP. A static domain decom-
position with two-level halos for flow quantities and one-level halos for grid information is
used. The current point implicit scheme will achieve a higher level of speedup as compared
to a convective flow code alone due to the larger number of operations that take place per
cell [29, 31].

Figure 1 shows a typical parallel speedup for this algorithm for an inviscid reactive
simulation on a 64× 64 cell mesh. As expected, efficiency decreases with the number
of processors due to communication overhead. This relatively small grid achieves quite
respectable parallel efficiencies, testifying to the high efficiencies attainable by explicit
algorithms for reactive flows. This indicates that the algorithm should scale reasonably
well, so that increasing the resolution of the grid while using a larger number of processors
will take approximately the same amount of wallclock time. Reactive simulations including
diffusive effects would be expected to be at least as parallel efficient as this inviscid simu-
lation. This is due to the increased amount of computational work necessary for diffusive
simulations while communication costs would remain approximately the same.

Stoichiometric hydrogen/oxygen flow over an axisymmetric spherical tip projectile at
M = 3.55 was simulated using the reduced chemistry model (six species, eight reactions)
of Evans and Schexnayder [9]. This corresponds to an experiment conducted by Lehr [21].
The diameter of this projectile is 15 mm. The free stream temperature is 292 K and the
free stream pressure is 24,800 Pa. The grid in this case is 64× 64 cells. The bow shock in
front of the body raises the temperature of the flow so that, after an induction zone, the flow
reacts. As shown in Fig. 2, the length of the induction zone varies depending on the post
shock temperature which corresponds to the relative strength of the shock. Temperature is
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FIG. 1. Parallel speedup for inviscid reacting case.

approximately constant in the induction zone as radicals build up to the necessary levels to
react and produce water vapor. The production of water vapor is accompanied by heat release
which raises the temperature and, because pressure is nearly constant across the reaction
zone, lowers the density. Figure 3 shows the temperature along the stagnation streamline
computed using the Evans and Schexnayder reaction model and also the Jachimowski
eight species, nineteen reaction modified model. The eight species, nineteen reaction model
produced a slightly different shock location, while the point of heat release is close to the
Evans and Schexnayder model. The only difference between these two calculations was the
chemistry model used: both models used the same algorithm and grid and were converged
to the same level of accuracy. Thus, even though both simulations are converged, different
solutions result because the mathematical models were slightly different in the modeling
of the chemistry. The difference in shock location could be explained by a difference in
relaxation characteristics behind the shock due to the chemical models. In addition, the heat
release profiles lead to slightly different static pressures behind the heat release region, which
could result in different shock positions. Figure 3 indicates that the numerical dissipation
scheme is providing the necessary dissipation in regions of steep gradients, such as the shock,
to prevent oscillations and preserve monotonicity while still allowing sharp resolution.

However, upon examining Fig. 2, one may notice that the numerical solution differs
slightly from the experimental shock location and heat release front. Thus, another simu-
lation was performed on a 64× 128 cell grid which had twice the number of grid cells in
the normal direction as the 64× 64 grid had. The Evans and Schexnayder model was used
for the chemistry, since it produced a shock location that was closer to the body on the
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FIG. 2. Temperature contours:M = 3.55 hydrogen/oxygen. Contour levels in K: min, 250; max, 3130; inc,
93. Grid size, 64× 64. Circles indicate experimental shock and heat release locations.

FIG. 3. Temperature along stagnation streamline for two different chemical models:M = 3.55 hydrogen/
oxygen; projectile surface atx/R= 0.00. Grid size, 64× 64.
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FIG. 4. Temperature contours:M = 3.55 hydrogen/oxygen. Contour levels in K: min, 250; max, 3130; inc,
93. Grid size, 64× 128. Circles indicate experimental shock and heat release locations.

64× 64 grid. Temperature contours for this finer grid simulation are presented in Fig. 4
along with experimental shock and heat release front locations. As can be seen, the agree-
ment between the experimental results and the numerical simulation is much better on this
finer grid. The increased resolution has moved the shock closer to the body, increased the
length of the induction zone, and moved the heat release front closer to the body. Density
and pressure contours are presented in Figs. 5 and 6.

The temperature along the stagnation streamline for the 64× 128 grid is shown in Fig. 7.
As in the case of the 64× 64 cell grid, the flow passes through a shock which is followed by
an induction zone where radicals are created due to the higher temperature. After sufficient
amounts of radicals have been formed, water vapor is created, increasing the temperature
and further hastening the reaction.

The mass fractions of the reactants and products for the Evans model simulation on the
64× 128 grid are plotted in Fig. 8. As expected, the reactants have almost constant mass
fraction through the shock and only begin to be consumed in the heat release region. Water
vapor is not formed in any appreciable quantity until the heat release region. It should also
be noted that the mass fraction profiles are monotonic; no overshoots in the mass fraction
of these primary components is observed, again indicating good performance of the CUSP
dissipation scheme.
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FIG. 5. Density contours:M = 3.55 hydrogen/oxygen. Contour levels in kg/m3: min, 0.05; max, 0.6; inc,
0.016. Grid size, 64× 128.

The growth and destruction of radical species is depicted in Fig. 9 for the Evans model.
This figure shows the logarithm of the mass fractions of the radical species. Exponential
growth can be observed in the induction zone, which is to be expected. After a small region
of slow growth, the radical mass fractions grow approximately nine orders of magnitude
in a very short distance, which is a testament to the ability of the CUSP splitting and the
flux limiter to capture large changes in the conservative variables without oscillation and
without undue damping. The mass fraction of the radicals does not decrease greatly after
the heat release zone, even with the formation of a great deal of water vapor. This is due
to the conversion of the reactants into radical species which then combine directly to form
water.

Upon examination of Fig. 4, it can be seen that the agreement between the computation
and experiment is quite good. This computation also agrees favorably with the simulation
of Yungsteret al. [45] who limited the cell Damk¨ohler number so that the heat release was
spread out among two to three cells. Because of the point implicit treatment of the chemical
model, no such limitation is necessary using the current formulation.

Figures 10 and 11 show the convergence histories for the six species, eight reaction
64× 64 cell calculation without and with multigrid acceleration. The convergence histories
present the root mean squared residual of the density of water and the number of supersonic
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FIG. 6. Normalized pressure contours:M = 3.55 hydrogen/oxygen. Contour levels(p/p∞): min, 1.0; max,
16.5; inc, 0.5. Grid size, 64× 128.

cells in the domain versus the number of cycles. The initial increase in the density residual
is due to the production of water as the flow initially reacts and the bow shock and reaction
zone move outward from the body. The use of multigrid provides a significant convergence
acceleration in this problem without compromising the accuracy of the solution.

The single grid calculation converged about six orders of magnitude in 2000 iterations,
consuming 995 seconds (wall clock) using four processors of an IBM SP. The multigrid
calculation, using only two levels of multigrid for this 64× 64 mesh, converged fourteen
orders of magnitude in 2000 iterations while requiring 1250 seconds on four processors. The
same level of convergence (which results in a solution that does not change) as the single
grid case using multigrid takes about 800 iterations at a cost of 500 seconds, almost halving
the computational time. The converged solutions with and without multigrid acceleration
are virtually identical due to the correct forcing of the coarse grid by the fine grid solution.
No unphysical diffusion of radical species is seen. The convergence history for the multigrid
64× 128 cell simulation is shown in Fig. 12. Multigrid again provides a significant conver-
gence acceleration.

A two dimensional viscous reactive test case was taken from an experiment performed by
Fielding [10]. In this experiment (Fig. 13), a wedge of half angle 6.34◦ was placed in a free
stream of partially reacted hydrogen and air. The free stream Mach number was 2.10, the
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FIG. 7. Temperature along stagnation streamline:M = 3.55 hydrogen/oxygen; projectile surface atx/R=
0.00. Grid size, 64× 128.

FIG. 8. Mass fractions along stagnation streamline:M = 3.55 hydrogen/oxygen. Shock location is atx/R=
0.22; heat release region begins atx/R= 0.065; projectile surface atx/R= 0.00. Grid size, 64× 128..=H2O;
d=O2; m=H2.

FIG. 9. Logarithm of radical mass fractions along stagnation streamline:M = 3.55 hydrogen/oxygen. Shock
location is atx/R= 0.22; heat release region begins atx/R= 0.065; projectile surface atx/R= 0.00. Grid size,
64× 128..=H; d=O; m=OH.
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FIG. 10. Single grid convergence history:M = 3.55 hydrogen/oxygen. Grid size, 64× 64.

free stream temperature was approximately 569 K, and the pressure was 0.060 atmospheres.
The object of the experiment was to see if radical-seeded hydrogen/air mixtures would react
at low pressures over a wedge after passing through an oblique shock. The mass fractions
of the inlet flow were determined by Fielding using a one dimensional reacting gas code
and are given in Table 1. Hydrogen had been injected into the air stream upstream of the
ramp, partially reacted, and then expanded so that the flow constituents became frozen.
It was assumed that nitrogen was an inert diluent. Due to the low pressure, the Reynolds
number at the end of the ramp is approximately 33,000 so that fully laminar flow may be
assumed. A laminar Prandtl number of 0.725 was assumed, so that the P`eclet number was
approximately 23,900 at the end of the ramp. Species diffusion and heat conduction effects
are included in the simulation. The nine species, 21 reaction model of Yetteret al.was used
because it had been the model utilized to generate the composition of the incoming flow.
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FIG. 11. Multigrid convergence history:M = 3.55 hydrogen/oxygen. Grid size, 64× 64.

The flow was simulated on a grid with 128 cells in the streamwise direction and 96 in the
direction normal to the plate. Symmetry boundary conditions were implemented along the
centerline of the flow upstream of the wedge so that the governing equations were solved
on only half of the experimental domain. The grid was clustered near the leading edge of
the wedge to properly resolve the growth of the boundary layer and the shock attachment.
Cells were also clustered near the ramp to resolve the boundary layer structure adequately;
approximately 32 cells were within the boundary layer.

Figure 14 presents contours of density for this flow. The relatively thick boundary layer
is immediately noticeable. Because of this thick boundary layer, the shock near the leading
edge of the plate is at a much higher angle than the region away from the ramp. The growing
displacement thickness from the boundary layer causes the main flow to see an effectively
curved wall and thus, weak expansion waves are formed to adjust the curvature of the shock.



       

504 SHEFFER, MARTINELLI, AND JAMESON

FIG. 12. Multigrid convergence history:M = 3.55 hydrogen/oxygen. Grid size, 64× 128.

FIG. 13. Experimental setup forM = 2.10 viscous wedge.
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TABLE 1

Free Stream Mass Fractions for

M = 2.10 Hydrogen/Air Viscous

Wedge Flow

Species Mass Fraction

H2 6.86× 10−3

O2 1.75× 10−1

H2O 2.86× 10−2

N2 7.84× 10−1

H 2.33× 10−4

O 9.66× 10−4

OH 1.65× 10−4

HO2 3.97× 10−3

H2O2 4.76× 10−10

It is also important to point out the absence of large heat release regions even though the
domain near the leading edge experiences a relatively large compression. The shock angle
obtained from the numerical simulation is 35.0◦while the experimental shock angle is 34.5◦.
The pressure field (Fig. 15) yields trends similar to the density field. There is curvature of
the shock near the leading edge and expansion waves may be seen in the region behind the
oblique shock. Very little change in the pressure is seen through the boundary layer.

The lack of progress of the reaction may be understood by viewing Fig. 16, which shows
contours of the logarithm of OH mass fraction. It is immediately obvious that the inlet mass
fractions are not in an equilibrium state, as rapid reaction takes place in the free stream flow,

FIG. 14. Density contours:M = 2.10 hydrogen/air 6.34◦ viscous ramp. Contour levels in kg/m3: min, 0.033;
max, 0.056; inc, 0.00129.
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FIG. 15. Normalized pressure contours:M = 2.10 hydrogen/air 6.34◦ viscous ramp. Contour levels (p/p∞):
min, 1.0; max, 3.06; inc, 0.0857.

producing more OH. Behind the shock, the increased pressure and temperature and slightly
increased residence time cause faster formation of OH, but the post shock temperature and
pressures are not sufficient to allow large quantities of OH to strip hydrogen atoms from
H2 molecules and form water vapor. Near the ramp surface, it can be observed that some

FIG. 16. Logarithm of OH mass fraction contours:M = 2.10 hydrogen/air 6.34◦ viscous ramp. Contour
levels: min,−3.33; max,−2.65; inc, 0.057.
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FIG. 17. Single grid convergence history:M = 2.10 hydrogen/air 6.34◦ viscous ramp. Grid size, 128× 96.

OH is being consumed and transformed to water. This is due to the higher temperature in
the boundary layer near the wall, and because the molecules in that region have a longer
residence time at those higher temperatures due to the lower velocity near the wall. The
maximum water mass fraction is approximately 3%, which is not much greater than the free
stream water mass fraction from Table 1. This small amount of water production and heat
release is not sufficient to cause thermal runaway, greater reaction, and greater heat release.
These results agree qualitatively with the experimental findings. Excited OH fluorescence
was observed in the region behind the shock and near the leading edge, but large regions of
heat release were absent.

Figures 17 and 18 show convergence histories for this calculation without and with
multigrid acceleration. The single grid calculation converged approximately three orders of
magnitude in 2000 iterations. The computational cost of this calculation was 4578 seconds
using six processors of an IBM SP. The multigrid calculation with two levels of grids
converged six orders of magnitude after 2000 iterations in 7992 seconds of wall clock time.
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FIG. 18. Multigrid convergence history:M = 2.10 hydrogen/air 6.34◦ viscous ramp. Grid size, 128× 96.

The multigrid calculation achieved the same convergence level as the single grid calculation
in approximately 2550 seconds, which is 1.80 times faster than the single grid calculation.
The results of both simulations are virtually identical. As in the inviscid case presented
previously, no unphysical diffusion of species is seen due to the correct forcing of the
coarse grid.

The third test case consisted of a stoichiometric hydrogen/air flow over a 10◦ viscous
ramp. The freestream Mach number was 4.0, the freestream temperature was 1200 K, and
the freestream pressure was one atmosphere. The 2-cm ramp was preceded by a 1-cm
solid wall section. The effects of viscosity, heat conduction, and species diffusion are all
included in this computation. This is a common viscous/reactive test case, with several
published computations available [4, 18, 32, 40] for turbulent reactive flows. However,
because of the lack of concrete knowledge regarding the effect of turbulence on combustion,
in this work the flow was computed assuming fully laminar flow. This will produce different
results than those obtained using a turbulence model, but a grid convergence study may
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still be pursued to determine the robustness of the numerical model. In addition, most of
the researchers who attempted this computation used grids leading to solutions that were
severely underresolved, both in the boundary layer region and in the reaction zone. Thus,
any results that were obtained must be viewed in this light.

This flow was computed using Westbrook’s nine species, seventeen reaction hydrogen/air
mechanism because other researchers have used this model for this test case. This is a
very challenging flow because of the myriad of physical phenomena that must be resolved
accurately. The formation of the boundary layer must be captured well, without unnecessary
dissipation, so that the displacement thickness is correct. The conduction of heat must also
be accurate so that the effects of viscous dissipation deep in the boundary layer are felt
correctly in the sections of the boundary layer far from the wall. Proper resolution of the
interaction of the shock and boundary layer and the oscillation free capture of the shock are
essential, as is the correct modeling of species diffusion. The free stream temperature is not
high enough to initiate a reaction, but the combination of high temperature in the boundary
layer, diffusion of radicals in the direction normal to the wall, and the oblique shock cause
a reaction front to form past the shock in the ramp region.

An assiduous grid convergence study was undertaken for this flow. Three grids were used
to simulate this flow and to determine the robustness of the algorithm. All three grids had
cells clustered near the wall to properly capture the laminar boundary layer, with approxi-
mately 32 cells within the boundary layer. In addition, cells were clustered near the start
of the ramp, where shock-boundary layer interaction may lead to interesting phenomena.
We would expect any artificial diffusion of mass, momentum, and energy to decrease as the
grid resolution increases. In addition, the modeling of convective and diffusive transport is
second order accurate and thus, the accuracy of the physical transport should increase as the
grid spacing becomes smaller. Figures 19, 20, and 21 show the temperature in the flow field
for three grids of size 64× 96, 64× 108, and 128× 156, with the first number of cells along
the wall and the second number of cells normal to the wall. As was expected, the formation
of the boundary layer and the attendant viscous dissipation raises the temperature near the
wall which causes various radical species to form. This leads to the formation of some water

FIG. 19. Temperature:M = 4.0 hydrogen/air 10◦ viscous ramp, 64× 96 grid. Temperature range, 1200–
3500 K.
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FIG. 20. Temperature:M = 4.0 hydrogen/air 10◦ viscous ramp, 64× 108 grid. Temperature range, 1200–
3500 K.

vapor very near the wall before the shock, but does not greatly affect the flowfield. One may
also notice the formation of a weak oblique shock at the left edge of the domain due to the
displacement thickness of the boundary layer. The interaction of the stronger oblique shock
and the boundary layer at the ramp corner separates the boundary layer for a short distance
and causes a small recirculation zone in that region. Beyond the oblique shock, the increased
temperature and pressure lead to faster radical production and increased diffusion of those
radicals and heat to the unreacted bulk flow behind the shock. The result is a reaction front
that forms and gradually moves away from the wall. The reaction front may be seen in a
different way by viewing the mass fraction of water in Fig. 22 for the 128× 156 grid. Com-
paring the results of the three grid simulations yields interesting insights into the resolution
needed for this flow. The third grid (128× 156) has twice the resolution of the first grid

FIG. 21. Temperature:M = 4.0 hydrogen/air 10◦ viscous ramp, 128× 156 grid. Temperature range, 1200–
3500 K.
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FIG. 22. Water mass fraction:M = 4.0 hydrogen/air 10◦ viscous ramp, 128× 156 grid. Mass fraction range,
0.00–0.18.

(64× 96) in both the normal and streamwise directions outside of the boundary layer. The
result is that the reaction front is unphysically diffused on the coarser grid (due to inade-
quate resolution of the reaction zone, artificial diffusion of radical species and energy, and
inadequate resolution for diffusive transport) and is captured quite well on the finest grid.
The curvature of the reaction front at the right edge of the domain may be an actual physical
phenomenon or it may be a numerical artifact. If it is a spurious numerical phenomenon, it is
probably due to one of two causes. First, it may be that the supersonic extrapolation bound-
ary conditions at the outflow plane are contaminating the solution. Second, the numerical
dissipation may be causing unphysical diffusion of radical species and heat. However, it is
unlikely, given the resolution of this grid in that particular area, that the artificial dissipation
is the cause. Thus, in order to test the accuracy of the boundary condition, an additional
simulation was performed in which the outflow plane of the simulation domain was moved
approximately 0.9 cm downstream. The computational size of this additional simulation
was also 128× 156 cells, with 32 cells again within the boundary layer.

The results of this extended domain simulation are presented in Figs. 23–25. The flow
field temperature is depicted in Fig. 23, where the solid line within the simulation domain
indicates the former outflow plane location. Comparing this figure to Fig. 21, one can see
that the temperature in the smaller domain and the extended domain match exceptionally
well in the original computational region. Water mass fraction is shown in Fig. 24, while
pressure may be viewed in Fig. 25. The extension of the domain makes it evidently clear
that the curvature of the reaction front observed in Figs. 21 and 22 is indeed a true physical
phenomenon. In addition, the simulation on the extended domain indicates that the use of
supersonic extrapolation boundary conditions at the outflow plane does not compromise
the accuracy of the solution in the region of the boundary. In this flow, radicals and heat
in the boundary layer diffuse outward normal to the wall and eventually, along with the
increased temperature and pressure behind the oblique shock, cause the reaction to proceed
in the inviscid region behind the oblique shock. This reaction front couples with the shock
toward the outflow plane and changes the angle of the discontinuity in the flow due to the
pressure and heat release behind the shock/reaction front.
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FIG. 23. Temperature for extended domain:M = 4.0 hydrogen/air 10◦ viscous ramp, 128× 156 grid. Temper-
ature range, 1200–3500 K. Solid line in the computational domain indicates original outflow boundary.

FIG. 24. Water mass fraction for extended domain:M = 4.0 hydrogen/air 10◦ viscous ramp, 128× 156 grid.
Mass fraction range, 0.00–0.18.

FIG. 25. Normalized pressure for extended domain:M = 4.0 hydrogen/air 10◦ viscous ramp, 128× 156 grid.
Normalized pressure range, 0.00–6.00.
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Other researchers’ previously published results [4, 18, 32, 40] for this flow were calculated
on coarser grids than the finest grid presented here. These previous simulations show a
coupled shock reaction front located much closer to the ramp corner in which the shock
curves away from the wall. While these other simulations were computed with turbulence
models of varying complexity, it is probably the underresolution of the reaction area which
leads to the greatest disparity between those results and those presented here. If the reaction
area is underresolved and the numerical scheme is too dissipative, then a probable result
would be for the reaction zone to move upstream to the shock position. This would be
caused by unphysical diffusion of radical species and thermal energy upstream, allowing
the reaction to commence earlier and thus move toward the shock. In fact, early simulations
of this flow field with the current method using a very coarse grid were characterized by
the reaction front moving upstream and away from the wall toward the shock location.

7. CONCLUSIONS

An accurate solver for the steady-state Euler and Navier–Stokes equations with chemical
reactions has been developed. It is found that the CUSP dissipation scheme yields accurate
capture of shocks, reaction zones, and reaction fronts for both inviscid axisymmetric and
viscous two-dimensional test cases while the use of multigrid acceleration techniques leads
to a significant decrease in computational time without sacrificing accuracy. The combi-
nation of the accuracy and parallel efficiency of the method allows the simulation of large
scale problems that would otherwise not be feasible.

APPENDIX: NOMENCLATURE

C(wi j ) convective Euler fluxes for celli, j
ci+ 1

2
speed of sound at interfacei + 1

2

D(wi j ) dissipative fluxes for celli, j
Di diffusion coefficient for speciesi
Di j binary diffusion coefficient between speciesi and j
di+ 1

2
artificial diffusive flux at cell interfacei + 1

2

d′
i+ 1

2
modified artificial diffusive flux at cell interfacei + 1

2

dc
i+ 1

2

artificial dissipation convective flux at cell interfacei + 1
2

dp
i+ 1

2

artificial dissipation pressure flux at cell interfacei + 1
2

E mass specific total energy (internal, chemical, and kinetic)
EAj activation energy forj th forward reaction
e mass specific mixture internal and chemical energy
f, g Euler flux vectors
fc, f p convective and pressure split vectors
fv, gv diffusive flux vectors
Gk multigrid forcing function
H mixture total enthalpy
hi mass specific static enthalpy of speciesi
I ′k−1,k multigrid limited interpolation operator
Kcj equilibrium constant for concentration for reactionj
K pj equilibrium constant for partial pressures for reactionj
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k f j , kr j forward and reverse rate coefficients for reactionj
L a limiter
M Mach number
NS(wi j ) diffusive fluxes for celli, j
Pk,k−1 multigrid transfer operator from grid levelk− 1 to levelk
p static pressure
Qk,k−1 multigrid residual collection transfer operator
q conductive heat flux vector
R mixture gas constant
R universal gas constant
R(wi j ) total flux residual for celli, j
R′(wi j ) modified flux residual for celli, j
T static temperature
u, v Cartesian velocity components
udi diffusion velocity vector for speciesi
udi , vdi diffusion velocity components for speciesi
Vi j volume of celli, j
w vector of conservative flow variables
1wi+ 1

2
central difference of flow variables at cell interface

Xi mole fraction of speciesi
αk weighting for stagek of multistage time stepping scheme
γ mixture ratio of specific heats
θu multigrid underrelaxation factor
ρ density
ρi density of speciesi
τ viscous stress
ω̇ chemical source term
Ä, ∂Ä cell element and boundary
∇ gradient operator

ACKNOWLEDGMENTS

This work was funded by AFOSR-URI F49620-93-1-0427. The first author was supported in part by a Fannie
and John Hertz Foundation/Princeton Research Center Fellowship.

REFERENCES

1. A. A. Belov,A New Implicit Multigrid-Driven Algorithm for Unsteady Incompressible Flow Calculations on
Parallel Computers, Ph.D. thesis, Department of Mechanical and Aerospace Engineering, Princeton Univer-
sity, June 1997.

2. T. R. A. Bussing and E. M. Murman, Numerical investigation of two-dimensional H2-air flameholding over
ramps and rearward-facing steps,J. Propulsion3(5), 448 (1987).

3. T. R. A. Bussing and E. M. Murman, Finite-volume method for the calculation of compressible chemically
reacting flows,AIAA J.26(9), 1070 (1988).

4. T. Chitsomboon, A. Kumar, and S. N. Tiwari,Numerical Study of Finite-Rate Supersonic Combustion Using
Parabolized Equations, AIAA paper 87-0088, AIAA 25th Aerospace Sciences Meeting and Exhibit, Reno,
NV, January 1987.



     

MULTIGRID ALGORITHM FOR REACTIVE FLOWS 515

5. J. D. Denton, An improved time marching method for turbomachinery flow calculations,J. Eng. Gas Turbines
Power105(1983).

6. S. Eberhardt and S. Imlay, Diagonal implicit scheme for computing flows with finite rate chemistry,
J. Thermophysics Heat Transfer6, 208 (1992).

7. D. R. Eklund, J. P. Drummond, and H. A. Hassan, Efficient calculation of chemically reacting flow,AIAA J.
25(6), 855 (1987).

8. D. R. Eklund, J. P. Drummond, and H. A. Hassan, Calculation of supersonic turbulent reacting coaxial jets,
AIAA J.28(9), 1633 (1990).

9. J. S. Evans and C. J. Schexnayder, Influence of chemical kinetics and unmixedness on burning in supersonic
hydrogen flames,AIAA J.18(2), 180 (1980).

10. J. Fielding,An Experimental Study of Supersonic Laminar Reacting Boundary Layers, Master’s thesis, De-
partment of Mechanical and Aerospace Engineering, Princeton University, January 1997.

11. W. C. Gardiner, Jr. (Ed.),Combustion Chemistry(Springer-Verlag, New York, 1984).

12. C. W. Gear,Numerical Initial Value Problems in Ordinary Differential Equations(Prentice Hall, New York,
1971).

13. C. J. Jachimowski,An Analytical Study of the Hydrogen-Air Reactions Mechanism with Application to Scram-
jet Combustion, NASA TP 2791, 1988.

14. A. Jameson, Solution of the Euler equations for two dimensional transonic flow by a multigrid method,Appl.
Math. Comp.13, 327 (1983).

15. A. Jameson, Multigrid algorithms for compressible flow calculations, inProceedings of the 2nd European
Conference on Multigrid Methods, Cologne, 1985, edited by W. Hackbusch and U. Trottenberg, Lecture Notes
in Math. (Springer-Verlag, New York/Berlin, 1986), Vol. 1228, p. 166.

16. A. Jameson, Analysis and design of numerical schemes for gas dynamics. 1. Artificial diffusion, upwind
biasing, limiters and their effect on multigrid convergence,Int. J. Comp. Fluid Dyn.4, 171 (1995).

17. A. Jameson, Analysis and design of numerical schemes for gas dynamics. 2. Artificial diffusion and discrete
shock structure,Int. J. Comp. Fluid Dyn.5, 1 (1995).

18. Y. Ju, Lower-upper scheme for chemically reacting flow with finite rate chemistry,AIAA J. 33(8), 1418
(1995).

19. R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller,A Fortran Computer Code Package
for the Evaluation of Gas-Phase Multicomponent Transport Properties, SAND 86-8246, Sandia National
Laboratories, Livermore, CA, May 1993.

20. T. J. Kim, R. A. Yetter, and F. L. Dryer, New results on moist CO oxidation: High pressure, high temperature
experiments and comprehensive kinetic modeling, inTwenty-Fifth Symposium (International) on Combustion,
The Combustion Institute, 1994.

21. H. F. Lehr, Experiments on shock-induced combustion,Astronautica Acta17, 589 (1972).

22. M.-S. Liou and C. J. Steffen, Jr., A new flux splitting scheme,J. Comput. Phys.107, 23 (1993).

23. L. Martinelli,Calculation of Viscous Flows with a Multigrid Method, Ph.D. thesis, Department of Mechanical
and Aerospace Engineering, Princeton University, October 1987.

24. L. Martinelli and A. Jameson,Validation of a Multigrid Method for the Reynolds Averaged Equations, AIAA
paper 88-0414, AIAA 26th Aerospace Sciences Meeting, Reno, NV, January 1988.

25. A. Matsuo and T. Fujiwara, Numerical investigation of oscillatory instability in shock-induced combustion
around a blunt body,AIAA J.31(10), 1835 (1993).

26. A. Matuso, K. Fujii, and T. Fujiwara, Flow features of shock-induced combustion around projectile traveling
at hypervelocities,AIAA J.33(6), 1056 (1995).

27. E. S. Oran and J. P. Boris,Numerical Simulation of Reactive Flow(Elsevier, Amsterdam, 1987).

28. G. Palmer and E. Venkatapathy, Comparison of nonequilibrium solution algorithms applied to chemically
stiff hypersonic flows,AIAA J.33(7), 1211 (1995).

29. S. G. Sheffer,Parallel Computation of Supersonic Reactive Flows with Detailed Chemistry Including Viscous
and Species Diffusion Effects, Ph.D. thesis, Department of Mechanical and Aerospace Engineering, Princeton
University, June 1997.



     

516 SHEFFER, MARTINELLI, AND JAMESON

30. S. G. Sheffer, A. Jameson, and L. Martinelli,A Multigrid Method for High Speed Reactive Flows, AIAA
paper 97-2106, AIAA 13th Computational Fluid Dynamics Conference, Snowmass Village, CO, June 29–
July 2, 1997.

31. S. G. Sheffer, A. Jameson, and L. Martinelli,Parallel Computation of Supersonic Reactive Flows with
Detailed Chemistry, AIAA paper 97-0899, AIAA 35th Aerospace Sciences Meeting, Reno, NV, January 6–9,
1997.

32. J. S. Shuen and S. Yoon, Numerical study of chemically reacting flows using a lower-upper symmetric
successive overrelaxation scheme,AIAA J.27(12), 1752 (1989).

33. M. A. Sussman,Source Term Evaluation for Combustion Modeling, AIAA paper 93-0239, AIAA 31st
Aerospace Sciences Meeting and Exhibit, Reno, NV, January 11–14, 1993.

34. S. Tatsumi, L. Martinelli, and A. Jameson,Design, Implementation, and Validation of Flux Limited Schemes
for the Solution of the Compressible Navier–Stokes Equations, AIAA paper 94-0647, AIAA 32nd Aerospace
Sciences Meeting, Reno, NV, January 1994.

35. S. Tatsumi, L. Martinelli, and A. Jameson,A New High Resolution Scheme for Compressible Viscous
Flow with Shocks, AIAA paper 95-0466, AIAA 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV,
January 9–12, 1995.

36. C. K. Westbrook, Hydrogen oxidation kinetics in gaseous detonations,Combustion Sci. Tech.29, 67 (1982).

37. F. A. Williams,Combustion Theory(Addison–Wesley, Reading, MA, 1985), 2nd ed.

38. G. J. Wilson and R. W. MacCormack, Modeling supersonic combustion using a fully implicit numerical
method,AIAA J.30(4), 1008 (1992).

39. G. J. Wilson and M. A. Sussman, Computation of unsteady shock-induced combustion using logarithmic
species conservation equations,AIAA J.31(2), 294 (1993).

40. H. C. Yee and J. L. Shinn, Semi-implicit and fully implicit shock-capturing methods for nonequilibrium flows,
AIAA J.27(3), 299 (1989).

41. R. Yetter and J. Fielding, private communication, Princeton University, 1996.

42. R. A. Yetter, F. L. Dryer, and D. M. Golden, Pressure effects on the kinetics of high speed chemically reacting
flows, inMajor Research Topics in Combustion, ICASE/NASA Series (Springer-Verlag, New York, 1992).

43. S. Yungster, Numerical study of shock-wave/boundary-layer interactions in premixed combustible gases,
AIAA J.30(10), 2379 (1992).

44. S. Yungster and A. P. Bruckner, Computational studies of a superdetonative ram accelerator mode,J. Propul-
sion Power8(2), 457 (1992).

45. S. Yungster, S. Eberhardt, and A. P. Bruckner, Numerical simulation of hypervelocity projectiles in detonable
gases,AIAA J.29(2), 187 (1991).

46. S. Yungster and M. J. Rabinowitz, Computation of shock-induced combustion using a detailed methane-air
mechanism,J. Propulsion Power10(5), 609 (1994).


